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Abstract

The enduring challenge in the field of artificial intelligence has been the control of
systems to achieve desired behaviors. While for systems governed by straightfor-
ward dynamics equations, methods like Linear Quadratic Regulation (LQR) have
historically proven highly effective, most real-world tasks, which require a general
problem-solver, demand world models with dynamics that cannot be easily de-
scribed by simple equations. Consequently, these models must be learned from data
using neural networks. Most model predictive control (MPC) algorithms designed
for visual world models have traditionally explored gradient-free population-based
optimization methods, such as Cross Entropy and Model Predictive Path Integral
(MPPI) for planning. However, we present an exploration of a gradient-based
alternative that fully leverages the differentiability of the world model. In our
study, we conduct a comparative analysis between our proposed method and other
MPC-based alternatives, as well as policy-based algorithms. In a sample-efficient
setting, our method achieves on par or superior performance compared to the
alternative approaches in most tasks. Additionally, we introduce a hybrid model
that combines policy networks and gradient-based MPC, which outperforms pure
policy based methods thereby holding promise for planning with world models in
complex real-world tasks.

1 Introduction

Until recently, model-free reinforcement learning (RL) algorithms [24]][28]] have been the predominant
choice for visual control tasks, particularly in simple environments like Atari games. However, these
model-free algorithms are notorious for their sample inefficiency and lack of generality. If the tasks
change, the policy needs to be trained again. They are constrained by their inability to transfer
knowledge gained from training in one environment to another. Consequently, they must undergo
retraining for even minor deviations from the original task. Real-world applications where the agent
needs to solve a multitude of different tasks in the environment, such as robotics, demand a more
general approach.

To address this limitation, multiple types of methods have been proposed. In this work, we focus on
model-based planning methods. These model-based approaches encompass three key components: a
learned dynamics model that predicts state transitions, a learned reward or value model analogous to
the cost function in Linear Quadratic Regulation (LQR) [6], which encapsulates state desirability
information, and a planner that harnesses the world model and reward model to achieve desired states.

While previous research in planning using Model Predictive Control (MPC) [25]] has primarily focused
on gradient-free methods like cross-entropy[27, 9], these methods are computationally expensive and
do not utilize the differentiability of the learned world model.
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Additionally Bharadhwaj et al. [3]] have explored a combination of cross-entropy with gradient-based
planning on a few tasks in the Deep Mind control suite, without fully exploring the potential of pure
gradient based planning.

In this research paper, we delve into the potential of pure gradient-based planning, which derives
optimal actions by back-propagating through the learned world model and performing gradient
descent. Additionally, we propose a hybrid planning algorithm that leverages both policy networks
and gradient-based MPC.

The key contributions of this paper can be summarized as follows:

1. Gradient-Based MPC: We employ gradient-based planning to train a world model based
on reconstruction techniques and conduct inference using this model. We compare and
contrast the performance of traditional population-based planning methods, policy-based
methods, and gradient-based MPC in a sample-efficient setting involving 100,000 steps in
the DeepMind Control Suite tasks. Our approach demonstrates superior performance on
many tasks and remains competitive on others.

2. Policy + Gradient-Based MPC: We integrate gradient-based planning with policy networks,
outperforming both pure policy methods and other pure MPC techniques in sparse reward
environments.

2 Related Work

World modelling (Sutton [33], Ha and Schmidhuber [[12]]) has emerged as a promising approachfor
real world RL. It condenses previous experiences into dense representations [29], allowing for
predictions about potential future events. Transformer-based [7, world models have delivered
promises of sample efficient representations, which was main issue with Model Free RL methods.
A plethora of world modeling methods involving self-supervised loss have emerged BYOL ([11]],
VICReg[3l], [31]], MoCo v3 [30]). Reconstruction based methods (DreamerV3 [17]) have proven to
work well in diverse set of complex environments[4}, 34]. Our current work examines a technique
on top of reconstruction based world modelling method, but it is generally applicable on top of any
predictive world modelling method. Our proposed Policy+Grad-MPC method is close to the one
proposed by [[I]], although as opposed to our method, MBOP is an offline algorithm and uses gradient
free planning .

3 Preliminaries

3.1 Problem Formulation

We consider a partially observable Markov Decision Processes (POMDP) (O, S, A, T, R), where
O € R"™ is observation, S € R™ and A € R™ are hidden state and continuous action spaces.
T:8x A xS — RT is the transition (dynamics) model, R is a scalar reward . We use a value V'
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for the hybrid planning algorithm involving both policy network and gradient based MPC, instead of
reward R. The goal for gradient based MPC, the hybrid method is to deduce a policy that maximizes

fo ' R(5;) and ZHH 'V(5;). H is planning horizon.

3.2 Latent World Modelling

Deterministic state model : hy < f(hi—1,St—1,a1—1)
Stochastic state model : sy <— p(s¢|ht)
Observation model : oy < p(o¢|hy, s¢)
Reward model : r; < p(r¢|he, s¢)

The world model utilized in our study is the Recurrent State Space Model (RSSM), which uses a
variational objective Kingma and Welling [[19]] and GRU Predictor Cho et al. [8]] . The RSSM operates
by dividing the overall state into two distinct components: the deterministic state and the stochastic
state.

The deterministic state model accepts inputs consisting of the current deterministic state, the stochastic
state from the previous time step, and an action. It then processes these inputs to produce the current
deterministic hidden state.

On the other hand, the stochastic state model is approximated through a neural network that is
conditioned on the deterministic hidden state. This model characterizes the stochastic state.

Both the observation model and the reward model are conditioned on both the deterministic hidden
state and the stochastic hidden state. The stochastic state component is designed to capture the
inherent randomness and variability in the input data, while the deterministic state component is
responsible for capturing features that are entirely predictable

we infer approximate state priors from past observations and actions with the aid of an encoder

=T
q(svrlovr, arr) = [T a(selhe, o) €]

t=1

Here ¢(s¢|h¢, 0;) is a Gaussian whose mean and variance are parameterized by conjunction of a
convolutional neural network [22]] followed by a feed forward neural network.

we consider sequences (o, at, rt)f, o; observation, a; action and r; reward. The RSSM model is
trained with a combination of reconstruction and KL losses,described by the following equation.
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The reward loss is computed similar to the observation loss.

3.3 Planning

Planning can be formalized as finding the best sequence of actions given a predictive model f, reward
function r, and value function V. The planning optimization process aims to determine the optimal
sequence of actions of length H that maximizes the cumulative reward over the entire trajectory:

t+H -1
7(s¢) = arg max Z Y R(5:) + vV (5iym) St = st, S141 = [(8t,a¢) 3)
i=t

Qt:t+H

The task of planning can be accomplished through various methodologies. One notable approach,
PlaNet, employs the cross-entropy algorithm (see section|[A.1)) to deduce the optimal sequence of
actions by leveraging the Recurrent State Space Model (RSSM) world model.

However, it is important to note that the cross-entropy method in addition to being computationally
expensive also exhibits scalability challenges, particularly in scenarios involving high-dimensional
action spaces. Similar population-based methods are prevalent in the literature, but they share the
same limitations.

To address these inherent shortcomings, we turn our attention to the gradient-based paradigm of
Model Predictive Control (MPC) as an alternative approach.

4 Gradient based Planning

Online optimization methods can be broadly categorized into two distinct approaches. The first
category is Gradient-Free Optimization, which operates without explicit directional information for
optimization. Techniques such as Model Predictive Path Integral (MPPI) [36] and Cross-Entropy
Optimization fall under this category. The second category is Gradient-Based Optimization, which
leverages directional information to guide the optimization process.

Previous research in the domain of planning with world models has predominantly focused on
the utilization of gradient-free optimization methods. However, real-world scenarios often involve
actions that are high-dimensional, making it computationally infeasible to converge to an optimum
using gradient-free optimization procedures. Additionally, these methods require significantly larger
amounts of data for training the world model, which may not always be readily available in practical
applications.

Gradient-Based Model Predictive Control (Grad-MPC) necessitates the establishment of an objective
to assess the desirability of a particular state. This can be achieved through various means. In the
context of standard Reinforcement Learning (RL), two primary approaches are employed: the use of
a reward function and the utilization of a value function. The reward function provides the planner
with immediate information regarding the desirability of a state, based on the returns assigned to
that state by the environment. However, the reward function can exhibit short-sightedness, as it may
not consider the desirability of states encountered along the trajectory from the current state to the
end state. Therefore, in certain cases, a value function is employed, which captures the expected
cumulative reward of the trajectory starting from a particular state and extending to the end. The
definitions of the reward function and the value function for a given state are as follows:

ry = R(sy) 4
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Gradient-based planning commences with the generation of a set of action trajectories, each with
a fixed length, drawn from a Gaussian distribution with zero mean and unit variance. This set
of trajectories is sampled in consideration of the current state of the system. The initial state, in
conjunction with the sampled actions, is then provided as input to the world model, which simulates
future states based on the sequence of actions. Subsequently, the reward model or value model serves
as a means to convey the desirability assessment for a given state back to the planner. Armed with
this information, the planner employs gradient descent optimization to iteratively refine actions to
maximize the expected reward.

This entire process is repeated iteratively over a few cycles to converge towards the optimal set of
actions that lead to desirable states. The method is outlined in algorithm [T}

Algorithm 1 Planning with Grad-MPC

1: Input:

H Planning horizon distance

I Optimization iterations

J Candidates per iteration

q(stlo<t, a<y) Current state belief

p(st|st—1,ar—1) Transition model

p(r¢|st) Reward model
Initialize:

Actions candidates (J) are sampled a;.4+ 5 < Normal(0, 1).
for optimization iteration ¢ = 1..1 do

for candidate action sequence j = 1...J do

. o .
E:Jt)+H+1 ~ q(stlo1:t, ar:e—1) Hfritjl p(srlsr—1, a’S'J—)l)

»

3:
4:
S: S
j H+1 j

6: RO = S Ep(r]si)]
7 aE:Jt)+H = agzjt)-i-H ~ VRY
8: end for
9: end for
10: J argsort({zjfljl1 R(T)}le)

J[0]
11: returna; .

Table 1: DM-Control 100K Results
SAC Pixels CURL PlaNet Dreamer | Grad-MPC
Cartpole 419 4+ 40 597 +170 | 563 £+ 73 326 + 27 470 + 55
Reacher Easy 145 + 130 517 £113 82+ 174 314 £+ 155 663 £+ 25
Finger Spin 166 =128 | 779 4+108 | 560 & 77 341+ 170 660 4 32
Walker Walk 42+ 12 344 +£132 | 221 + 43 277 £ 12 237 + 56
Cheetah Run 103 £+ 38 307 +£48 | 165 +123 | 235+ 137 184 £ 81

5 Experiments

In our research, we employ PlaNet as the foundational world model for our experimentation. To
enhance PlaNet’s planning capabilities, we substitute its planning module with our custom gradient-
based planner, Grad-MPC. PlaNet utilizes planning both during training and evaluation, we substitute
CEM with Grad-MPC for both. In figure 3| we present a comparative analysis of the performance of
our Grad-MPC approach against the results obtained from the Cross-Entropy and Policy Network
methods on five Deep Mind Control [34] tasks: Cartpole Swingup, Reacher Easy, Finger Spin, Walker
Walk, Cheetah Run.
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Figure 3: Test Rewards of Grad-MPC in 150k env steps These rewards are calculated over 10
test episodes across three random seeds. Dotted lines represent performace of Planet and Dreamer at
100K steps

When subjected to training for 100,000 steps across various tasks in DM Control, Grad-MPC
demonstrates equivalent or superior performance in comparison to Cross-Entropy and Policy-based
methods. It is vital to acknowledge that when addressing real-world tasks, data availability may be
constrained. Hence, it becomes imperative to assess the efficacy of these methods in terms of sample
efficiency.

Additionally, in table[T] we compare Grad-MPC’s performance at 100,000 steps with four strong
baselines consisting of both model-free and model based RL methods:

1. Soft Actor-Critic [13]: It is a model free RL method involving policy and action networks.
We adopt pytorch code[37] for performance results.

2. CURL [20]: It is model based method that uses contrastive representation learning on image
augmentations.

3. PlaNet[15]], Dreamer[14]: Both are image reconstruction based representation learning
methods.

Our findings reveal that Grad-MPC excels particularly well in handling simple tasks. We postulate
that this effectiveness could stem from its ability to converge to optimal solutions more readily. This
characteristic holds significant promise when constructing hierarchical models where complex tasks
are decomposed into simpler sub-tasks and subsequently delegated to the planner. In such a scenario,
Grad-MPC emerges as the optimal algorithm for low level planning, because for simpler goals the
local optimum aligns with the global optimum.

6 Policy + gradient based MPC

Policy networks fall under the offline planning category. During training, policy networks learn with
the assistance of a world model and value function and are then locked or frozen for use during
testing. These policy networks are considered cutting-edge in model-based Reinforcement Learning



(RL) due to the remarkable memory capabilities of neural networks. However, as the environment
becomes more complex, the accuracy of these networks tends to decrease. This is because even minor
changes in the state distribution can result in significant errors, since even slight deviation from the
training trajectories would result in states which the system has not encountered, thereby rendering
policy networks inefficient [ 10 [32]]

This situation becomes especially evident in sparse environments where accumulating errors may
cause the system to miss a specific target, which is often the only rewarding state.

To address the errors associated with policy networks, we propose a hybrid planner. This hybrid
planner leverages the memory capacity of policy networks and combines it with the precise planning
abilities of gradient-based Model Predictive Control (MPC). We call this approach "Policy+grad-
MPC."

The Policy+grad-MPC method operates in a manner similar to the grad-MPC method explained in
previous sections. However, in this approach, trajectories are initialized from the output of the policy
network.

In our experiments, we utilize the Dreamer model (see section[A.2)) as our foundation and replace
the policy network with our custom hybrid planner. Dreamer uses the policy network g (a¢|s;) and
value model vy, (s;) to infer the optimal actions instead of the reward model unlike PlaNet.

ai =a "t —a.VV(si),i = l.iters (6)

The policy network and value model are learnt using the objective§A.4]

Dreamer evaluates value estimate as mentioned in eq(2). It is essentially mix between immediate
reward, value in imagined trajectory and value function.

We test our method in two sparse environments across 3 seeds utilizing the Dreamer Model pre-
trained on 500,000 environment steps. Demonstrating superior performance compared to the pure
policy-based approach of Dreamer.

Table 2: Performance in Sparse Environments

Env Pure Policy(Mean rewards,o) | Policy+MPC(Mean rewards,o)
Ball in cup catch 608.5 + 336.7 725.6 £ 237.3
Cartpole swingup sparse 639.5 = 64.2 701.2 £40.3

7 Discussion and Future Work

Sub-Optimal Local Minima : Despite the successes of grad-MPC in sampling efficiency and scaling
to high dimensional action spaces. Pure gradient based planning suffers from the problem of local
minima. Hence if trained with enough data, policy networks eventually beat grad-MPC. Policy
networks themselves might also fail to generalize for complex real world tasks,therefore they are not
the complete solution either. We hypothesize that a hierarchical [21]] method might hold the key. A
hierarchical system in the style of director [[16] wherein a complex goal is broken down into subgoals
using a policy network and the resulting simpler goal could be solved by using grad-MPC.

Gradient based methods can further be enhanced with regularisation, consistency and robust world
modelling techniques. Many other techniques can be performed on top or in conjuction with gradient
based methods. Our paper demonstrates potential of this method.
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A Appendix

A.1 Cross - Entropy

The cross-entropy method, a population-based optimization technique, initiates by randomly sampling
a set of actions from a Gaussian A/ (u, 32), during each iteration n action trajectories are sampled, and
the top k sequences with the highest reward (refer) are used to update the parameters of the gaussian,
same procedure is repeated for m iterations.For i=1,2,...m ,The update equations are as follows.

i

Pt = mean|(al, L p_ 1)) ()

=yl 4 variance[(ai;i_T_l)?:l]. (8)

A.2 Model components of dreamer
Components of the dreamer model are as follows
Representation — pg(s¢|st—1,a1—1,0¢)

Transition — qp(S¢|St—1, at—1)
Reward — qo(r¢|st)
Valuemodel — vy (s)
Actionmodel — qy(at|st)
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Figure 4: Effect of number of Grad-MPC candidates(number of sampled trajectories) on
performance for each environment(150 episodes=150k environment steps) across single seed

A.3 Derivation

Assuming pl = p(s1.r|a1.r) and gl = ¢(s1.7|01.¢, a1.7) and using jensens inequality.

Inp(o1.7|ar.T) > Epn

lan(0t|st)]
t=1

T p(od]s)p(selse—1,ai-1)
:qu lan t zEp t|St—1, t—1]
t=1

q St|0§taa<t)

(E‘I(St ‘O§t7a<t) [hlp(Ot |St)]

T
=1

t

- Eq(St—1|0§t,—17<l<t—1) [KL [q(5t|0§t, at)”p(st‘st—la at—l)]]) (9)

A.4 Dreamer Model

Training loss for the action model and the value function are defined as follows:

t+H
PolicyLoss — max Ego.q4 ; Va(sr) (10)
t+H 2
ValueLoss — rrb)in Eq.05 Lzz:t i(vw(sf) - V,\(ST))l (11)
h—1
VkN(ST) = Eqs,% Z 'Yn_‘rrn + ’Vh_‘rvw(sh)‘| ) (12)
here h = min(r + k,t + H),

H-1

Va(se) = (1- ) (Z A“%{V(sT)) £ AV (5,), (13)
n=1

A.5 Rewards vs Candidates

We run experiments on test performance by varying number of candidiates across three different
environments. We observe that more sampled trajectories lead to better test reward performance]
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A.6 Implementation Details

We use Pytorch implementation of PlaNet [2]], it is distributed under MIT license. We also use
Pytorch implementation of Dreamer [35]], it is distributed under MIT license.

A.7 Hyperparameters

Table 3: Hyper-parameters and their default values for the PlaNet experiments.

Parameter Value
Optimizer Adam [18]]
max-episode-length 1000
experience-size 1000000
activation-function relu
embedding-size 1024
hidden-size 200
belief-size 200
state-size 30
exploration-noise 0.3
seed-episodes 5
collect-interval 100
batch-size 50
overshooting-distance 50
overshooting-kl-beta 0
overshooting-reward-scale 0
global-kl-beta 0
free-nats 3
bit-depth 5
learning-rate le-3
adam-epsilon le-4
grad-clip-norm 1000
planning-horizon 12
optimisation-iters 40
candidates 1000
action-learning-rate 0.1-0.01-0.005-0.0001

Table 4: Action Repeat values across environments.

Env Action Repeat

cartpole swingup
reacher easy
finger spin
cheetah run

cup catch

walker walk

N OB NP>
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Table 5: Hyper-parameters and their default values for the Dreamer experiments.

Parameter Value
Optimizer Adam (18]
embedding-size 1024
hidden-size 400
belief-size 200
state-size 30
exploration-noise 0.3
overshooting-distance 50
overshooting-kl-beta 0
overshooting-reward-scale 0
global-kl-beta 0
free-nats 3
bit-depth 5
learning-rate le-3
adam-epsilon le-4
grad-clip-norm 1000
planning-horizon 1
candidates 1

A.8 DM Control Suite

Table 6: Difficulty and Action Dimension for Various Tasks

Task Sparsity Difficulty Dim(A)
Cartpole Swingup dense Easy 1
Cup Catch sparse Easy 2
Finger Spin dense Easy 2
Walker Walk dense Easy 6
Cheetah Run dense Medium 6
Reacher Easy dense Medium 2
Cartpole Swingup Sparse sparse Medium 1
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